Online Bivariate Outlier Detection in Final Test Using Kernel Density Estimation
نویسندگان
چکیده
In parametric IC testing, outlier detection is applied to filter out potential unreliable devices. Most outlier detection methods are used in an offline setting and hence are not applicable to Final Test, where immediate pass/fail decisions are required. Therefore, we developed a new bivariate online outlier detection method that is applicable to Final Test without making assumptions about a specific form of relations between two test parameters. An acceptance region is constructed using kernel density estimation. We use a grid discretization in order to enable a fast outlier decision. After each accepted device the grid is updated, hence the method is able to adapt to shifting measurements.
منابع مشابه
Generalized Outlier Detection with Flexible Kernel Density Estimates
We analyse the interplay of density estimation and outlier detection in density-based outlier detection. By clear and principled decoupling of both steps, we formulate a generalization of density-based outlier detection methods based on kernel density estimation. Embedded in a broader framework for outlier detection, the resulting method can be easily adapted to detect novel types of outliers: ...
متن کاملOutlier Detection with Kernel Density Functions
Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel unsupervised algorithm for outlier detection with a solid statistical foundation is proposed. First we modify a nonparametric density estimate with a variable kernel to yield a robust local density estimation. Outliers are then detected by comparing the local density ...
متن کاملAdaptive kernel density-based anomaly detection for nonlinear systems
This paper presents an unsupervised, density-based approach to anomaly detection. The purpose is to define a smooth yet effective measure of outlierness that can be used to detect anomalies in nonlinear systems. The approach assigns each sample a local outlier score indicating how much one sample deviates from others in its locality. Specifically, the local outlier score is defined as a relativ...
متن کاملContinuous Adaptive Outlier Detection on Distributed Data Streams
In many applications, stream data are too voluminous to be collected in a central fashion and often transmitted on a distributed network. In this paper, we focus on the outlier detection over distributed data streams in real time, firstly, we formalize the problem of outlier detection using the kernel density estimation technique. Then, we adopt the fading strategy to keep pace with the transie...
متن کاملA Local Density-Based Approach for Local Outlier Detection
This paper presents a simple but effective density-based outlier detection approach with the local kernel density estimation (KDE). A Relative Densitybased Outlier Score (RDOS) is introduced to measure the local outlierness of objects, in which the density distribution at the location of an object is estimated with a local KDE method based on extended nearest neighbors of the object. Instead of...
متن کامل